
Speeding up MLE with Jax (and JIT)

Richard Chen

1 Introduction

We would like to find the global minima of a convex function

min
w∈χ

f(w) (1)

We assume the function f(w) is twice differentiable and convex. Convex functions are nice because a local
minimum is guaranteed to be a global minimum. A sufficient condition to prove a point is a local minimum
is that the gradient must be 0, and the Hessian must be positive semi-definite in a neighborhood.

Proposition: Suppose f is twice continuously differentiable with ∇2f positive semi-definite in a neigh-
borhood of w∗, and that ∇f(w∗) = 0. Then w∗ is a local minimum of f.

2 Optimization Methods

There are a lot of solvers for minimizing Equation 1 including (but not limited to) Gradient Descent based
ones (SGD, ADAM, AdaGrad) which are especially popular in ML communities. These algorithms find the
optimum by repeatedly moving in a direction opposite of the gradient.

wt+1 = wt − η∇f(wt) (2)

The update rules usually look like Equation 2 where η is the step size.

Another class of solvers are Quasi-Newton methods. To determine the optimal step size, these algorithms
use an approximation of the Hessian matrix. An approximation is used because

1. Calculating the Hessian is computationally expensive (O(n3))

2. If the objective function isn’t perfectly convex, the Hessian won’t necessarily be PSD or invertible

Popular Quasi-Newton methods include BFGS, SR1, and Powell’s. These algorithms follow the same general
iterative update of their estimates.

wt+1 = wk − γkP (wt)
−1∇wf(wt) (3)

For Newton’s method, the matrix P (θk) is just the Hessian, with a step size γk = 1. BFGS uses a P
matrix which approximates the Hessian. Note that Equation 3 reduces to a gradient descent solver when P
is replaced with the identity matrix.

We focus on quasi-newtonian methods simply because those are the default solvers in the commonly used
python function

scipy.optimize.minimize

1

3 What is Jax?

Jax is an open source python library from Google that offers several attractive features when it comes to
optimization. The 2 we’ll focus on are

1. Automatic Differentiation

2. Jit

Automatic Differentiation There are many open source python libraries that offer auto-differentiation
(sometimes referred to as autograd or autodiff). Depending on the complexity of the function, these can
provide a significant speed up compared to finite-difference approaches 1.

Jit stands for Just-In-Time compilation. Every programming language is converted to machine code
(binary) at some point. Some languages (C, Go, Fortran) are compiled languages. These are “lower” level
languages which are first compiled to “translate” them to machine code, and are then executed. Interpreted
languages (Python, R) don’t perform this translation until run time. Beneath the hood, these higher level
languages are implemented in a lower level language. E.g. Python is written in C, which performs the
translation into machine code for Python. One big advantage of interpreted languages like Python is it’s
easier to interpret for humans. So when one write a line of python code and executes it, the computer must
first translate it into machine code, and then execute the code.
This creates an opportunity for JIT compilation. Executing code in a JIT way creates a longer start up
time, but very fast subsequent calls. This is ideal when performing optimizations for gradient descent. The
code translates all of the necessary mathematical structure in machine code with arbitrary values for the
variables which will be filled in at run time. Now each time the function is called, the code simply fills in
the placeholders with the called function values, providing a large compuatationl speed-up.

3.1 How to use JIT

Jax’s official documentation page here is very helpful. If you would like to JIT a block of code, the main
things to keep in mind are

1. Array shapes and types must be static

2. Control flow is annoying (if else statements)

3.1.1 JIT Example

Suppose we have the following python code

def loglikelihood(theta):

...

init_guess = np.array([...])

opt = scipy.optimize.minimize(loglikelihood, init_guess)

This can easily be sped up using Jax by putting a Jit wrapper around the loglikelihood function.

def loglikelihood(theta):

...

init_guess = np.array([...])

loglikelihood_jit = jax.jit(loglikelihood)

Initial call to translate to machine code

loglikelihood_jit(init_guess)

opt = scipy.optimize.minimize(loglikelihood_jit, init_guess)

1Check appendix section A for more details

2

https://jax.readthedocs.io/en/latest/index.html
https://jax.readthedocs.io/en/latest/notebooks/thinking_in_jax.html
https://jax.readthedocs.io/en/latest/notebooks/thinking_in_jax.html#to-jit-or-not-to-jit
https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#python-control-flow-jit

3.2 Jax Autograd Functions

Jax has 3 different functions you can call to calculate a gradient.

1. jax.grad

2. jax.jacfwd

3. jax.jacrev

jax.jacfwd uses forward-propagation while jax.jacrev and jax.grad use backwards-propagation. jax.jacrev
is more efficient for “wide” Jacobian matrices. A wide Jacobian will have a lot of inputs, which will benefit
from the speed-up advantage backwards propagation gives when traversing the graph backwards. Conversely,
jax.jacfwd is more efficient for ”tall” Jacobian matrices. Per jax documentation, “jacfwd probably has an
edge over jacrev.” for near-square matrices. One can then daisy chain these in whatever order is convenient
to efficiently compute the hessian.

4 Empirical Results

We solve a toy example where data is generated from the following utility function (the actual parameters
are known):

uij = β0+β1 · logsquarefeetj +β2 ·bathroomsj +β3 ·bathroomsj · family sizei+γi · outdoor spacej + ϵij (4)

γi is drawn from a normal distribution. Consumer i chooses from a set of apartments j. We observe the
choice each consumer makes, as well as all characteristics of each apartment. We assume the outside option
is not buying an apartment.

We solve this problem using the python scipy.optimize.minimize library2, passing in functions for the
loglikelihood and jacobian.

Table 1 shows the results for 3 different gradient methods when varying what function we jit. The re-
sults show that convergence is fastest when using an auto differentiator, and we “jit” both the loglikelihood
and gradient functions.

Tables 2 and 3 show the results of the three jacobian methods along with the xlogit library. We vary 3
sets of variables: # of consumers, # of products, and # of random draws. In all 3 cases, convergence was
achieved most quickly and most accurately using the auto differentiator.

Table 4 fixes the data dimensions and compares results when varying the solver used in scipy.optimize.minimize.
All solvers converged to the same value, but L-BFGS-B converged the fastest. Again, autograd provided the
fastest convergence out of all three jacobian functions used.

2Results are from running on a 2015 iMac with a 4 GHz Quad-Core Intel Core i7 processor. Obviously these results aren’t
systematic, but should give a sense on what methods are generally faster or slower.

3

https://jax.readthedocs.io/en/latest/_autosummary/jax.grad.html
https://jax.readthedocs.io/en/latest/_autosummary/jax.jacfwd.html
https://jax.readthedocs.io/en/latest/_autosummary/jax.jacrev.html
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html
https://xlogit.readthedocs.io/en/latest/index.html

Data type Gradient Jit(log likelihood) Jit(Grad) Time (s)
Pandas Finite Differences Very slow
jnp Finite Differences 10.36
jnp Finite Differences ✓ 4.45
jnp Analytic 10.10
jnp Analytic ✓ 9.84
jnp Analytic ✓ 2.74
jnp Analytic ✓ ✓ 1.73
jnp autograd 1.83
jnp autograd ✓ 1.18
jnp autograd ✓ 1.59
jnp autograd ✓ ✓ 0.96

Table 1: i=10k, j=21, random draws=12

individuals (i) autograd (s) analytic (s) finite differences (s) xlogit (s)
10,000 0.96 1.73 10.59 2.28
50,000 10.32 21.96 94.42 13.25
100,000 16.14 23.21 81.69 27.74

j=21; random draws=12. Winner: Autograd

options (j) autograd (s) analytic (s) finite differences (s) xlogit (s)
20 0.96 1.73 10.59 2.28
100 5.37 10.54 42.68 11.64
500 30.27 OOM 186.53 no convergence

i=10,000; random draws=12. Winner: Autograd

random draws autograd (s) analytic (s) finite differences (s) xlogit (s)
12 1.02 1.67 10.22 2.36
50 4.52 8.92 28.37 5.38
100 8.95 no convergence 53.62 10.06

i=10,000; j=21. Winner: Autograd

Table 2: Varying data dimensions. Convergence time in seconds

individuals (i) autograd (ll) analytic (ll) finite differences (ll) xlogit (ll)
10,000 23812.98 23812.98 23812.98 24022.44
50,000 117379.22 117379.22 117379.22 118751.42
100,000 262236.97 262236.97 262236.97 264003.72

j=21; random draws=12. Winner: Autograd

options (j) autograd (ll) analytic (ll) finite differences (ll) xlogit (ll)
20 23812.98 23812.98 23812.98 24022.44
100 38418.69 38418.69 38418.69 38943.93
500 51974.99 OOM 51974.99 no convergence

i=10,000; random draws=12. Winner: Autograd

random draws autograd (ll) analytic (ll) finite differences (ll) xlogit (ll)
12 23812.98 23812.98 23812.98 24022.44
50 23809.98 23809.98 23809.98 23978.29
100 23809.97 no convergence 23809.97 23976.35

i=10,000; j=21. Winner: Autograd

Table 3: Varying data dimensions. Loglikelihood

4

solver (i) autograd (s) analytic (s) finite differences (s)
BFGS 0.96 1.73 10.59
CG 6.96 18.15 90.75

Newton-CG 2.69 6.75 47.84
L-BFGS-B 0.58 1.05 4.80

TNC 2.00 4.87 35.00
SLSQP 0.81 1.24 5.36
i=10,000; j=21; random draws=12. Winner: Autograd

Table 4: Varying optimizer solvers. Loglikelihood

5 Takeaways

Use jax/jit operations whenever possible in optimization. Its implementation is quite easy as long as there
aren’t any control flow statements in loglikelihood functions. In general, it seems faster to use an autodiffer-
entiator as opposed to an analytical derivative function. Do not ever use pandas dataframes in an optimizer.
The calls make it extremely slow. Xlogit is not a reliable library to use. You cannot easily view jacobians,
or set starting values.

5

A Calculating Gradients

There are different classes of methods in finding the gradient. We will focus on numerical and analytical
methods.

A.1 Simple Review

Jacobians A jacobian is a matrix of the first-order partial derivatives for a vector function. Assume we
have an n-dimensional vector, with parameters β

f̂(β) =


f1(β)

.

.

.
fn(β)

 (5)

The jacobian matrix takes the gradient of every element in f̂ . Specifically, one can define each element
in the matrix as Jij =

∂fi
∂xj

J =


∂f1
∂x1

... ∂fn
∂x1

...
. . .

...
∂f1
∂xm

... ∂fn
∂xm

 (6)

A.2 Finite Differences

Finite differences is a numerical method in approximating the gradient. The approximation stems from the
taylor expansion of a derivative. Let’s say we want calculate the derivative at a point, x0 for function f(x).

f(x0 + h) = f(x0) +
f ′(x0)

1!
h+

f ′′(x0)

2!
h2 + ...+

f (n)(x0)

n!
hn

We ignore n ≥ 2 terms as residual terms.

f ′(x0)h = f(x0 + h)− f(x0)

f ′(x0) =
f(x0 + h)− f(x0)

h

As h approaches 0, this numerical approximation gets closer to the true derivative value, as the residual
terms go to 0. This is essentially the limit definition of the derivative. It’s important to note that when
implemented in code, this remains an approximation and is not an exact value.

This is the default differentiation method for scipy.optimize.minimize

A.3 Automatic Differentiation

Automatic differentiation (also colloquially known as autograd or autodiff) takes a different approach.

Chain rule of composite functions Both forward/backward propagation are computing partial deriva-
tives of composite functions.

y = f(g(h(x))) = f(g(h(w0))) = f(g(w1)) = f(w2) = w3

It is useful to define composite functions in terms of weights, denoted by wn. This convenience will become
more obvious later. Keeping with notation, the derivative of y is

∂y

∂x
=

∂y

∂w2

∂w2

∂w1

∂w1

∂x
(7)

6

A.3.1 Forward Propagation

There are 2 different ways of calculating Eq 7. One could start with ∂w1

∂x and work from right to left. Al-

ternatively one could start with ∂y
∂w2

and work from left to right. The former describes the recursive process

for forward propagation (the latter for backwards propagation), which we will now focus on3.

Define the derivative of variable wi as

ẇi =
∂wi

∂x
(8)

This is equivalent to the recursive definition below.

ẇi =
∑

j∈parentofi

∂wi

∂wj
ẇj (9)

Consider the function

y = f(x1, x2) = x1x2 + sin(x1) = w1w2 + sin(w1) = w3 + w4 = w5 (10)

If we want to find ∂f
∂x1

, we calculate the following.

∂f

∂x1
=

∂w5

∂x
= ẇ5

ẇ5 =
∂w5

∂w4
ẇ4 +

∂w5

∂w3
ẇ3

ẇ5 =
∂w5

∂w4
(
∂w4

∂w1
ẇ1) +

∂w5

∂w3
(
∂w3

∂w2
ẇ2 +

∂w3

∂w1
ẇ1)

We are finding the partial derivative wrt x1 so trivially ẇ1 = 1, and similarly ẇ2 = 0. If we now want to
find the gradient of f(x1, x2), a total of 3 passes are necessary. The first pass populates the fields with values
of x1, x2, and symbolically represents partial derivatives such as ∂w4

∂w1
. The second pass finds ∂f

∂x1
, using seed

values of ẇ1 = 1, and similarly ẇ2 = 0. The third pass finds ∂f
∂x2

, using seed values of ẇ1 = 0, and similarly
ẇ2 = 1. For each input parameter, a pass must be made through the graph to recursively calculate these
derivatives.

A.3.2 Backward Propagation

The back-propagation algorithm has become increasingly popular because of it’s computational advantages
in training Neural Networks. Neural networks often have many input parameters compared to its output
parameters. This creates an advantage to Forward Propagation, which has a time complexity that scales
with input parameters. The process is similar, but slightly different which improves run time.

We take Eq 7 and now first calculate ∂y
∂w2

and move from left to right. We can define a term w̄i as

w̄i =
∂y

∂wi
(11)

which is equivalent to the recursive definition below.

w̄i =
∑

j∈childofi

∂wj

∂wi
w̄j (12)

We return to Eq 10. If we want to find the gradient of f(x1, x2), only one sweep is necessary.

3Derivation heavily inspired by wikipedia

7

∂f

∂x1
=

∂w5

∂x1
= w̄1

w̄1 =
∂w3

∂w1
w̄3 +

∂w4

∂w1
w̄4 =

∂w3

∂w1
(
∂w5

∂w3
w̄5) +

∂w4

∂w1
(
∂w5

∂w4
w̄5)

The key distinction is these intermediate partials don’t have to be recalculated.

∂f

∂x2
=

∂w5

∂x2
= w̄2

w̄2 =
∂w3

∂w2
w̄3 =

∂w3

∂w2
(
∂w5

∂w3
w̄5)

The key idea is that term ∂w5

∂w3
w̄5 has already been calculated once for the first partial derivative, and

now we can use that in the second partial derivative as well. This is because w̄5 isn’t changing values, we
can reuse it. This illustrates how we only have to passthrough the entire graph once to get all of the partial
derivatives. In contrast, for forward propagation, those seed values change based on what you’re calculating,
so you have to do multiple sweeps.

8

	Introduction
	Optimization Methods
	What is Jax?
	How to use JIT
	JIT Example

	Jax Autograd Functions

	Empirical Results
	Takeaways
	Calculating Gradients
	Simple Review
	Finite Differences
	Automatic Differentiation
	Forward Propagation
	Backward Propagation

